

LOW NOISE MESFETs FOR ION IMPLANTED GaAs MMICs

A.K. Gupta, D.P. Siu, K.T. Ip and W.C. Petersen

Rockwell International Microelectronics Research and Development Center
Thousand Oaks, California 91360

ABSTRACT

Fabrication considerations for low noise FETs in ion implanted GaAs MMICs are presented. Processes that can deteriorate FET performance have been identified and some solutions proposed. Low noise MMIC FETs fabricated along these lines show good microwave performance through 18 GHz, approaching the performance available from similar discrete FETs. 0.8 μ m gate length MMIC FETs with a noise figure of 2.9 dB and associated gain of 6.1 dB at 18 GHz have been fabricated. These devices are suitable for low noise applications in ion implanted GaAs MMICs.

the extra processing seen by the MMIC FETs and a study was initiated to identify the causes for FET degradation. The results of this study are presented below.

INTRODUCTION

Gallium Arsenide Monolithic Microwave Integrated Circuit (MMIC) technology has matured rapidly during the last few years. MMICs reported in the literature reflect increasing levels of chip complexity and a wide range of microwave applications (1-3). One of the areas of interest at the present time is the improvement of yield through a better control of fabrication processes and an understanding of the effect of each fabrication step on device performance. In this paper, the performance of low noise MMIC FETs is discussed.

We have reported (4) an ion implantation based process for the fabrication of GaAs MMICs incorporating active devices, RF and DC biasing circuitry, and bypass capacitors. The process involves multiple, localized ion implantation in qualified semi-insulating GaAs substrates for active layer formation, contact photolithography for patterning, plasma enhanced CVD silicon nitride for metal-insulator-metal (MIM) capacitors, and a two level metallization scheme with air bridge cross-overs. Via holes through the substrate are etched as necessary for providing a low inductance connection to the ground plane on the back of the wafer. Discrete FETs (from test patterns) fabricated by this 10 mask-level process have been compared with standard FETs fabricated in our laboratory using an abbreviated process consisting of only four mask levels. Both types of FETs (Fig. 1), have $\sim 0.8 \mu$ m \times 300 μ m refractory metal gates. Initial results indicated that the FETs obtained from the complete MMIC process had higher noise figures and lower gains than the standard FETs. The differences were attributed to

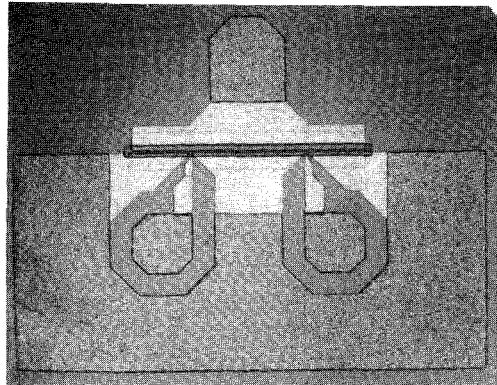


Fig. 1 Photograph of the discrete low noise MMIC FET used for evaluation. Gate dimensions are: $\sim 0.8 \mu$ m \times 300 μ m.

DEVICE FABRICATION

The MMIC fabrication process described in Ref. 4 is outlined schematically in Fig. 2. As shown there, FET fabrication is complete at the end of step No. 3. The remaining processes are required to fabricate the other components (MIM capacitors, RF and DC circuitry, via holes, etc.) comprising a MMIC. In addition to a reactively sputtered silicon nitride cap for annealing implant damage (not shown in Fig. 2), two other silicon nitride layers are used in the fabrication process. Both of these layers are deposited at 250°C by plasma enhanced CVD. The first silicon nitride layer (deposited after ohmic contact alloying) is used for dielectric aided liftoff (5) of FET gates and the first metallization level which forms ohmic contact overlays and the bottom electrode of MIM capacitors. Experience has shown that this technique results in a straightforward high yield process. The second dielectric layer is used for MIM capacitors.

Discrete FETs are also fabricated in our laboratory. Essentially the same process is used except implantation over the entire wafer, in conjunction with mesa etching, is used to define

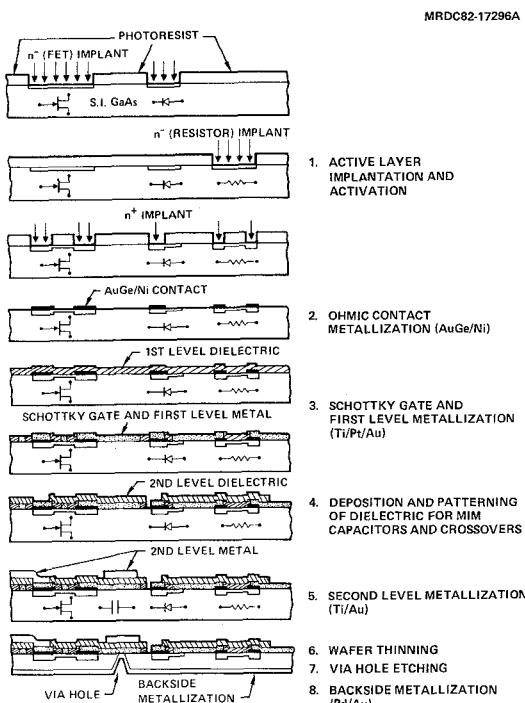


Fig. 2 A schematic outline of MMIC fabrication process.

active layers rather than localized implantation, and front end processing is terminated at the end of step No. 3, Fig. 2. Patterning of the gate metallization by direct liftoff (without the use of nitride) is preferred for discrete FETs, since it allows fabrication of gates with shorter gate lengths than is possible by dielectric aided lift off.

PROCESS-DEVICE INTERACTIONS

The performance of MMIC FETs differs from that of discrete FETs due to the additional processing steps required in MMIC fabrication. Important changes in FET characteristics occur due to the following:

1. Ohmic contact degradation during thermal cycles associated with dielectric deposition.
2. Damage or etching of exposed active layers (especially between gate and source) during plasma processes, e.g., dielectric deposition and reactive ion etching.
3. Increased gate-to-source (C_{gs}) and gate-to-drain (C_{gd}) capacitance due to a layer of high dielectric constant material (silicon nitride) over the FET.

Ohmic contact degradation was observed in the first generation MMICs fabricated in our laboratory which used the same process that was then

being used for low noise FETs. This consisted of e-beam evaporation of Au (88 wt%) - Ge (12 wt%) and Pt on a lightly etched GaAs surface, patterning by liftoff, and alloying at 450°C for 60 sec in forming gas. Typically, this resulted in a specific contact resistance of $\sim 1-3 \times 10^{-6} \Omega \text{cm}^2$. When ohmic contact resistance was measured again after the completion of all subsequent MMIC steps, an increase was always observed as shown in Table 1 for some representative wafers. In order to identify the reasons for contact degradation, specific contact resistance was measured on AuGe/Pt and AuGe/Ni based contacts (with and without an overlay) as a function of isochronal annealing on several test wafers. The results are shown in Fig. 3. The test samples were heated for 30 min in air at 150°C, 250°C and 350°C each and contact resistance was measured after each cycle. The results clearly indicate that both contact systems without an overlay remain stable through the heating cycles, but AuGe/Pt contacts with Ti(500Å) - Pt(1000Å) - Au(3500Å) overlay degrade when subjected to heating cycles. Thus, it appears that the contact resistance on MMIC wafers increased during the two nitride deposition steps during which the wafers are kept at 250°C for ~ 30 min. Figure 3 also shows that AuGe/Ni based contacts are free of this problem. Therefore, AuGe/Pt contacts were replaced by AuGe/Ni contacts and low ohmic contact resistance has since been observed as shown by the data in Ref. 4.

Table 1
Specific Contact Resistance Results

Metallization Wafer No.	R_C (micro-ohm cm^2)
144	50.8
165	9.06
173	25.4
174	8.54

Specific ohmic contact resistance measured after completion of all MMIC fabrication steps. Note the large variation. Typically, $R_C < 3 \times 10^{-6} \Omega \text{cm}^2$ is observed immediately after sintering the contacts.

The atomic mechanism responsible for this phenomenon is not understood at the present time. However, these data are in agreement with those of Lee et al (6) who studied the long term reliability of AuGe/Pt and AuGe/Ni ohmic contacts to GaAs and concluded that "AuGe/Pt contacts are stable without overlay but degrade rapidly with overlay."

The problem of inadvertently damaging or etching exposed active layers is quite serious. This is most likely to happen during processes in which the wafer is subjected to ion bombardment (e.g., ion milling, reactive ion etching, dielectric deposition by plasma enhanced CVD, etc.) or wet chemical etching. When this happens, the sheet resistance of the layer increases and, in

Table 2
Effect of Ion Bombardment on Active Layers

	Before Dielectric Deposition	After Dielectric Deposition
Average Sheet Resistance (ρ_{\square})	769.0 Ω/\square	1089.0 Ω/\square
Average I_{DSS} (before gate) $w = 200 \mu\text{m}$	80.2 mA	59.5 mA
$\rho_{\square} \times I_{DSS}$	61.7 V	64.8 V

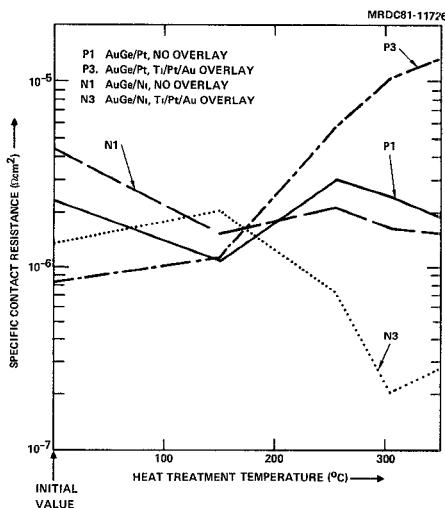


Fig. 3 Specific contact resistance as a function of isochronal annealing for AuGe/Pt and AuGe/Ni based contacts. The wafers were heated for 30 min in air at 150°C, 250°C and 350°C each and contact resistance was measured after each heating cycle.

the case of the FET, increases the parasitic gate-to-source resistance, thereby increasing noise figure of the device. To illustrate the magnitude of this effect a GaAs wafer with a silicon implanted active layer (125 keV, $3.5 \times 10^{12} \text{ cm}^{-2}$) was prepared for FET fabrication by mesa etching and forming ohmic contacts. Sheet resistance of the layer and I_{DSS} (before gate) of 200 μm wide FETs were measured across the wafer. A 5000Å silicon nitride layer was then deposited by plasma enhanced CVD. Substrate temperature was kept at 250°C and a 13.56 MHz RF power (inductively coupled) of 100 W was used. Next, via holes were etched in the nitride to access the ohmic pads and the previous measurements were repeated. The results (Table 2) show that the damage to the layer is substantial. The product $\rho_{\square} \times I_{DSS}$ is approximately constant as expected. It has been found in the past that sometimes it is possible to anneal this surface damage and restore original values of ρ_{\square} and I_{DSS} by heating the wafer to $\sim 450^\circ\text{C}$ for 1-2 min. However, metallization systems always degraded significantly at such temperatures and this was not considered a viable approach.

This problem is especially serious for ion implanted active layers since these layers are generally much thinner than those that can be obtained by epitaxial techniques. Epitaxially grown FET layers can be made to have a sufficiently thick surface n^+ layer that can significantly reduce the effects of surface damage such as that seen in plasma enhanced CVD. However, due to a limitation of $\sim 2 \times 10^{18} \text{ cm}^{-3}$ in the peak doping density that can be obtained by ion implantation in conjunction with thermal annealing, and

the fact that attempts to produce very deep ion implanted layers results in a highly graded interface between the active layer and the substrate which is unsuitable for low noise applications, ion implanted layers tend to be thin and hence more susceptible to damage by fabrication processes.

With recent developments in photo-CVD (7) it is now possible to deposit dielectric layers at low temperatures without the use of a plasma. This not only eliminates damage to the active layers, it also allows liftoff techniques to be used with dielectric deposition since the deposition temperature can be kept below 100°C. Thus, silicon nitride can be deposited only where needed (MIM capacitors, crossovers, etc.), and not over the entire wafer as before. When FETs are coated with a layer of high dielectric constant material like silicon nitride, both C_{gs} and C_{gd} increase. The exact change is difficult to measure accurately since the capacitances are very small in magnitude; however, preliminary measurements show an increase of approximately 50 fF in $C_{gs} + C_{gd}$ for a 300 μm wide FET due to a 6000Å layer of silicon nitride on its surface. This change is especially significant for C_{gd} , which may increase by $> 100\%$ as a result of the dielectric. Previous attempts to etch off the dielectric over the FETs were not very satisfactory due to the damage problem discussed earlier in this section.

MMIC FET PERFORMANCE

Discrete FETs (on test patterns) were fabricated by the complete MMIC process described earlier except that changes were made to reflect the improvements outlined in the previous section. Direct liftoff was used for gate metallization and a 1.0 μm thick layer of polyimide was used to protect the FET from plasma damage and to minimize the increase in C_{gs} and C_{gd} . The FETs were mounted in standard 70 mil low noise FET packages for microwave evaluation. Similar discrete FETs fabricated by an abbreviated 4 mask-level process were also packaged and tested for comparison. There was no scratch protection layer on these devices. The MMIC FETs had their source pads grounded through via holes whereas the discrete FETs used multiple wire bonds to provide a

low inductance source connection. Salient features of the MMIC FETs (Fig. 1) are summarized in Table 3. A comparison of the low noise performance of discrete and MMIC FETs at 18 GHz is provided in Table 4. The best minimum noise figure and associated gain of the discrete FETs is listed along with similar data for two representative MMIC wafers. Average minimum noise figure values are within 0.3 dB of the best numbers. As shown by the data in Table 4, the low noise performance of MMIC FETs is comparable to the best published results for 0.8 μ m gate length GaAs FETs, making this device suitable for low noise applications in monolithic circuits. The differences between discrete and MMIC FETs have also been minimized in spite of the additional processing steps for the MMIC FETs. With more experience, this difference is expected to be reduced even further.

Table 3
Salient Feature of MMIC Low Noise FETs

Active Layer	: Localized ion implantation through 500 \AA Si_3N_4 ; Si, 5E12, 100 keV and 5E12, 260 keV
Gate Length	: ~ 0.8 μ m W-Au (by contact photolithography)
Gate Width	: 300 μ m (4 \times 75 μ m)
Source-Drain Gap	: 3.8 μ m
Gate-Source Gap	: ~ 0.9 μ m

Table 4
Best Noise Figure and Associated Gain Data
 $f = 18 \text{ GHz}$

Wafer No.	Type	Minimum Noise Figure (dB)	Associated Gain (dB)
A	Discrete	2.6	7.1
B	MMIC	2.9	6.1
C	MMIC	2.9	6.0

CONCLUSIONS

Fabrication consideration for low noise FETs in ion implanted GaAs MMICs have been presented. In particular, processes that can deteriorate FET performance have been identified and some solutions proposed. Low noise MMIC FETs fabricated along these lines show good microwave performance through 18 GHz, closely matching the performance available from discrete FETs and demonstrating that they are suitable for low noise applications in ion implanted GaAs MMICs.

REFERENCES

1. C. Kermarrec, J. Gaguet, P. Harrop and C. Tsironis, "Monolithic Circuits for 12 GHz Direct Broadcasting Satellite Reception," Proc. 1982 Microwave and Millimeter-Wave Monolithic Circuits Symposium, p. 5, June 1982, Dallas.
2. W.C. Petersen, A.K. Gupta and D.R. Decker, "A Monolithic GaAs dc to 2 GHz Feedback Amplifier," Vol. ED-30, No. 1, pp. 27-29, January 1983.
3. Y. Ayasli, R. Mozzi, L. Hanes and L.D. Reynolds, "An X-Band 10 Watt Monolithic Transmit-Receive GaAs FET Switch," Proc. 1982 Microwave and Millimeter-Wave Monolithic Circuits Symposium, p. 42, June 1982, Dallas.
4. A.K. Gupta, W.C. Petersen and D.R. Decker, "Yield Considerations for Ion Implanted GaAs MMICs," Vol. ED-30, No. 1, pp. 16-20, January 1983.
5. D.R. Decker, W.C. Petersen and A.K. Gupta, "Monolithic GaAs Microwave Analog Integrated Circuits," Report No. DELET-TR-78-2999-F, Final Report prepared for Electronics Technology and Devices Laboratory, August 1982.
6. C.P. Lee, B.M. Welch and W.P. Fleming, "Reliability of AuGe/Pt and AuGe/Ni Ohmic Contacts on GaAs," Electronics Letters, 17, 12, p. 407, June 1981.
7. J.W. Peters, F.L. Gebart and T.C. Hall, "Low Temperature Photo-CVD Silicon Nitride: Properties and Applications," Solid State Technology, p. 121, September 1980.